Fig. 2. Data for the melting of

silver, together with the results of

Kennedy and Newton. The various

symbols correspond to different

runs and container materials; the

symbols with tails denote data ob-

tained upon decompression cycles,

those without tails refer to com-

pression. The accepted zero-pres-

sure melting point is indicated.

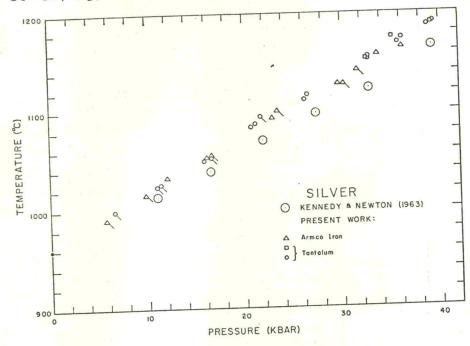
ing of esults and Is cor-

145

d cons with upon withn. The nelting

ercept $p^2 < 0$, ritical e data others ns for lloying ed and tercept ility of nt but iations

lished. couple Getting om the ar, recopper, tuzov,2 ressure, ressure odium" (Fig. 1). ilts, the


allowed error is ey used re data (Table

merican psules of

.38 and

s. 36, 523

cation).

Armco iron and tantalum with Pyrex stoppers; there was no evidence for reaction between samples and containers, in accord with the more careful reports in the literature. Data in the range of 5 to 40 kbar were obtained and are shown in Fig. 2. Precise determinations of friction were made in each run and were less than 3 kbar, double-value. The data, uncorrected for any effects of pressure on thermocouple emf, are believed precise to $\pm 4^{\circ}$ and accurate to ± 1.0 kbar (Fig. 2).

The present data for silver, uncorrected for the effect of pressure on thermocouple emf, can be fitted with straight lines of slope 5.87±0.27°/kbar passing through the zero-pressure melting point of 960.8°C (Fig. 2).

If the thermocouple corrections according to the data of Hanneman and Strong⁸ are made, the slope is increased to ~6.9°/kbar; according to Getting and Kennedy,9 the slope is altered to ~6.0/kbar. Kennedy and Newton3 reported data for the melting of silver in iron10 capsules up to 40 kbar; the melting temperatures, determined with chromel-alumel thermocouples, increased linearly with pressure at the rate of 5.0°/kbar (Fig. 2). There are at least several possible reasons why

TABLE I. Pertinent thermodynamic data near the zero-pressure melting points.

TABLE 1. I CICINET				
	Copper	Silver	Gold	
fliquid	2.3±0.1 7.951±11 ^b	~2.3 ₁ 11.543±13°	~2.2 ₁ 11.4 ₀ ^d	
solid	7.601°	10.969 ^f 0.574±13	10.789^{g} $\sim 0.6_1$; $\gtrsim 0.56_0$	
(liquid	~7.9 ₇ b	11.20±2°	~7.₀ ^d	
solidi	6.02e	9.69 ^t	7.31g ~0.6	
[liquid	~1.9 ₅ ~7.5	~7.3	~7.0	
solid	7.47	7.7_0 $-0.4(\pm 0.2?)$	7.3_1 $-0.3(\pm 0.1?)$	
	3.65±0.27	~5.9 ₄ (±0.3?)	~6.0-6.6	
	{ liquid solid liquid solid ⁱ liquid	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

^{*}R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, Selected Values for the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons, Inc., New York, 1963).

*J. A. Cahill and A. D. Kirshenbaum, J. Phys. Chem. 66, 1080 (1962).

*A. D. Kirshenbaum, J. A. Cahill, and A. V. Grosse, J. Inorg. Nucl. Chem. 24, 333 (1962).

*A. D. Simmons and R. W. Baluffi, Phys. Rev. 129, 1533 (1963).

*R. O. Simmons and R. W. Baluffi, Phys. Rev. 119, 600 (1960).

*R. O. Simmons and R. W. Baluffi, Phys. Rev. 125, 862 (1962).

*See Ref. 16.

See Ref. 16.

See Ref. 13.

Values deduced from measurements of macroscopic volume, not from lattice-parameter measurements.

¹⁰ R. C. Newton (private communication).